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Overall picture:
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Modeling plasma-wall interactions requires
understanding complex physical and chemical processes

Carbon contamination of the plasma results from erosion of
the surface by chemical and physical sputtering.
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Molecular Dynamics and surface Monte Carlo simulations enable
fundamental understanding and determine required sputtering-yield data



Goal: generate table of erosion as function of many variables

Yield as a function of:
•ion/neutral type
•incident energy
•incident angle
•particle flux
•surface temperature
•surface topography

Large number O(105-106) of
MD simulations required – use
accelerated or rare event
methods (future).

MgO sputtered by 600 eV Ar ions

Sputtering Yield Y = Species ejected from the surface
Energetic ion impacting the surface 
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We are calculating carbon and hydrocarbon yields similar to the MgO
example below (Zepeda-Ruiz & Srolovitz, J. Appl. Phys., 2001 &2002).



Bombardment simulations at LLNL
H/D/T projectiles, 5-300 eV, several
angles of incidence, hitting  an irreducible
region on the surface.

AIREBO code: original serial code (from S. Stuart) Modified to do ion bombardment.
Parallel spawning (T. Oppelstrup, LLNL) 

one yield  point (without long range+torsion terms) takes ~1.5 hours in 20 CPU’s.
(1 yield point 2,000 runs; 500 atoms, 0.5 ps each; i.e. ~40 ms/atom/step/CPU)

MDCASK (LLNL): highly parallel, variable
time step, Potential: REBO+long range+ZBL
Targets: 500-40,000 C atoms, 300-600 K

Thermostat
at sides
and
bottom to
minimize
boundary
effects
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aC:H sample with 30%-40% H content
g(r) matches published results, sp2/sp3

ratio ~60%/40% at 300 K

100 eV D  aC:H sample, 45o, 300 K
No sputtering for this event. D gets
trapped in the amorphous sample.

We have produced an amorphous carbon MD “sample” to
model steady-state divertor surfaces with CHx



Calculation of reflection coefficients
T  aC:T

• Large differences between BCA (SRIM2003) and MD results.
• Smooth dependence with polar angle at low energies
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Carbon sputtering yield as a function of energy
First sputtering calculations above 35 eV
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physicalchemical
• Clear evidence of
chemical erosion
• Calculated value within
range of existing
experimental values for
H, D bombardment.

Yield is 3-8 times lower
than  low energy yield
from Salonen et al.,
PRB 63 (2001) 195415,
for TaC:H. Possible
reasons:
• different H/C ratio
(30% vs. 40%)
• Different surface
topologies give different
ejection probabilities. Near future calculations:

• calculation for aC:H sample with 40% H
• to evaluate role of the surface topology, build
several different surfaces and re-calculate yields



Carbon sputtering yield as a function of angle
 First sputtering calculations as a function of incident angle

• Yield increases with the
incident angle, as
expected, BUT …
• There seems to be no
simple functional form to
fit the angular
dependence.
• At high polar angles the
yield decreases (very
glancing incidence
becomes ineffective)

 Near future calculations:
• calculation for additional angles
• to evaluate role of the surface topology, build several different surfaces and re-calculate.
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Impacts produce a variety of ejected carbon complexes
 case I: 50 eV at 0°, 1.55%  31 C ejected  case II: 100 eV at 0°, 1.30%  26 C ejected
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 No observation of “methane” formed directly by impact/chemical sputtering
• No CH3/CH2 on the surface
• CT4 could form/eject much later on, on the surface or directly above the surface 
use chemical kinetics code to evaluate this possibility.



Summary and future work
CARBON SPUTTERING YIELDS:
• MD calculations using REBO potential include both

physical and chemical effects.
• Calculated sputtering and reflection for graphite
• Constructed amorphous C:H sample for MD sputtering
• Obtained sputtered species and erosion rates for

amorphous C

• First sputtering calculations at energies above 35 eV
• First study as a function of incident polar angle

Future calculations:
• Sample energy and angle more finely
• Sample surface temperature
• Sample surface topology
• Sample target content of H/D/T

Provide sputtering/reflection/sticking tables as input for near-
surface chemistry/plasma codes
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